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NONPARA}4ETRIC BAYES ESTIMATION WITH INCOMPLETE

- DIRICHLET PRIOR INFORNATION*
- 

-
..~_ ., ~~~ ~~ by

Gregory Campbell and Myles Hollander

11 Purdue University and Florida State University

1. Introduction and Summary

In this paper we treat the topic of incomplete information regard ing the

parameter a of a Dirichiet process prior . Ferguson [4] introduced the Dirichiet

process for the incorporation of prior information into the analysis of

nonparametric problems. The process can be viewed as a prior on the set of

all distributions on a measureable space (X,A). The process is parametrized

by a, a non-negative, non-null finite measure on (X,A). (In this paper we

restrict to situations where X = R, the real line, and A B, the Borel

a-field.) Typically, to use estimators which are Bayes with respect to a

Dirichiet process with parameter a, the statistician must provide a complete

specification of the measure a. This paper develops some estimators that rely

only on partial information concerning a.

One approach to incomplete information concerning a is that initiated

by Doksum [3] . Doksum assumes that a(t
~
,ti+i], i=l ,.. .,k-l are known with

a(R_ (tl,tkj )  * 0. That is, the values that a assigns to the k-i intervals

(t i, t 2],... ,(t k_ l , tkl are known, and a(R) = c*(tl,~k
l. In ection 3 of this

paper, Doksum ’s technique for obtaining a mixed rule (Definition 3.1) is

considered and shown also to yield a G-minimax rule (Definition 3.2) for a

suitable choice of G.

*Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF ,
under Grants AFOSR-74-25818 and AFOSR-76-3109. The United States Government
is authorized to reproduce and distribute reprints for governmental purposes.
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Section 4 considers the estimation of A = Pr(X�Y), when X1,...,X is a

sample from a Dirichiet process with parameter a and Y1,...,Y~ is a sample

from a second, independent Dirichiet process with parameter B. A mixed

rule is found to be
k-i

+ M
1

+ .. .+M
~ 

+ ~~a(t~~ ,t~~~~1
] + 

~
M. +i ]}{ B( t. ,t

~~+i] 
+ N

1
}

+ in)(8(R) + n) 
(1. 1)

where t4~ and N. denote the number of X ’ s and Y ’ s, respectively, in the interval

(t j  ~~~~~~
In Section 5 the problem considered is the estimation of the rank order

(Definition 5.1) of X1 among X1,...,X~ based on Xii•~ •~
Xr (r<n), where

X1,.. .,X~ is a sample of size n from a Dirichiet process on (R,B) with parameter

a. For the case where a is completely specified, a Bayes estimator was

developed by Campbell and Hollander [2]. Here a mixed rule is obtained for

the case where a is not completely known but instead only the a(t~ ,t.~1]k-i 1

values, i=l ,...,k-l (with cs(R) =~~~ cx (t~ 5t1~1]). are specified.1=1
Section 2 contains some Dirichiet process preliminaries.

2. Dirichiet Process Preliminaries

Let G(a 8) denote the gamma distribution with shape parameter a � 0 anc.

scale pa~ a ’ieter ~ 
> (/ • J ~ ~ = ‘

~~, ~~~~~~ t~is~:~:
1:u iOfl is degenerate at 0. If

a > 0 , it has ~ dt°nsity “pith rr~~:v~ :t t .  LcI~esT c measure on the real line given by

= (F(a)B’~)
4 

~~~ exp(—z/B) I(0 ,,)(z). (2.1)

where denotes the indicator function of the set ;,.

/

-- —~~~~ ------—- ——— -—- . -~ —~~~ .- - - _______________________
— —~~~~~~~~~~~ --. - -  - .  

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
. -  
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Definition 2.1. The Dirichiet distribution with parameter (a l , . . . ,ak) where
k

� 0 for all j and 
~ 

a~ > 0, denoted V( cz1,. .. ~aJ~
) ,  is defined as the

j =i

distribution of 
~~l ’” ’~ k~ ’ where

k
Y. = 

~ 
Z~~, j = 1,... ,k,

~

and the Z~’s are independent random variables with gamma distributions

G(a., 1), for i 1,.. .,~~~ .

If a . > 0 for all j = 1, . .  ., k , the (k - 1)-dimensional distribution of

is absolutely Continuous with respect to Lebesgue measure on

the (k - 1)-dimensional Euclidean space with density

f (y i , . . ., yk l lct l , . . ., c&k
)

(2. 2)
r(a + . . .+a ) k-i a. -l k-i

= r(al)...r(ak) [.
fl
1

Y1
1 } [l - i Y ~}

where S is the simplex

k-i
= {(y l , . . . , yk l ) :  y .  � 0 , i = 1,...,k— 1 , ~ � i}.

1=1

For k = 2 , (2.2) become s the density of a beta distribution with parameters

a1 and a2.

Proposition 2.2. (Wilks , [6] p. 179). The r1,.. . ,r~ moment of the Dirichlet

dist ribution V(c*l,...,ak) is , for £ � k - 1 and r. a non-negative integer

such that r1 positive implies a1 positive , for i = 1 ,. . .  ,E. :

r Ca 1 + r1). . .r(a~ + r,)r(a)
= r(al)...r(aL)r(a + r) 

• (2 .3)

I

hi. ~~~~~~~~~~~~~~~~ 
— 

~~~
---- _. _

~-~~ _J.-~~ —.----~~~~~ — - -  - --c-- ~~~~~~ 
-

~~~~~
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k 9.
where a = a. and r = r..

-1.1 ~ j=1 ~
r i

For k a positive integer, let y1- denote the ascending factorial

y(y + 1) ... (y + k - 1) and define y1~~ E 1. Then it is convenient to

rewrite (2.3) as

[r~] [re] [ri
r = ~~~ a

9. /a . (2.4)l’..
~ ’ £

For a more complete treatment of the Dirichiet distribution , the reader

is referred to Wiiks [6].

Let (X,A ) denote a measurable space. A particular stochastic process

{P(A)- } is defined .

Def 2.3. (Ferguson. [4]). Let a denote a non-negative, non-null ,

finite measure on (X,A). P is a Dirichiet process on (X A) with parameter

a if, for every k = 1, 2, . . .,  and every measural~}e partition C8~~~~~~ 
,8k~

of X, the distribution of (P(B1),... ,P(Bk)) is Dirichiet with parameter

Ferguson [4] shows, using the Kolmogorov extension theorem, that there

exists a probability measur e , call it Q ,  ~~ ([~~1]
A BFA) yielding the above

Afinite-dimensional marginal Dirichiet distributions. Here [0,1]

represents the space of all functions from A into (0,1] (which thus includes

P, the set of all probability measures on (X,A)) and BFA is the c~-fie1d

generated by the field of cylinder sets.

Definition 2.4. (Ferguson , (4]). The collection of random variables

X1,.. .,X~ is said to be a sample o~ size n from the Dirichiet process P on

(J~,A) with parameter a if, for any m 1, 2, ..., and measurable sets

____________ 
---- ~~~~~~~-~~
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A1, . . ., A , C1,.. . ,C~ ,

Pr{X1 € C1,...,X~ € C
n IP(Ai)j~~•~~i

P(A ) , P(C
1),...,

P(C ) }  =IIP(C. ), (2.5)

where Pr denotes probability.

Intuitively,X1,...,X is a sample of size n from a Dirichiet process if P is

randomly selected according to Q and then, given P, X1,...,X~ is a sample

from the probability measure P.

Using Kolmogorov ’s extension theorem once again , Ferguson shows that

there exists a probability measure on (X~x [O,l]
’
~, A~xBf

’4) with marginal

probability on ([o,i]~ , BFA) given by the above %. Since this probability

also depends on a, it will also be called Q4. It can be shown (cf. Berk

and Savage [1]) that Q concentrates all its mass on (txp, A~x~(P)), where

a(P) is the inherited a-field for P from BFA . Thu s , P is a random

probability measure. If F(x) = P(-t~,x], then F is a random distribution

function , a sample path of the Dirichlet process.

Theorem 2.5. (Ferguson , [4]). If P is a Dirichlet process on (X,4) with

parameter a, and if X1,...,X~ is a sample of siz e n from P, then the condi-

tional distribution of P given X1,.. .,X~ is also a Dirich iet process on

(X ,A) with parameter a + , where denotes the measure with mass one
i=l i

at z, zero elsewhere.

3. Mixed Rules and G-Hinimax Rules

Doksum [3] considered the problem of partial prior information in the

decision theoretic framework, in particular , as applied to nonparametric

problems with Dirichlet parameters incompletely specified . It is assumed

throughout this section that a(t1, t~~1]. 
i = 1,... ,k - 1 , are known and that

a(R-(t1, tkl) = 0.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



6

Let ~2 be a class of distribution functions of (R ,~ ), where R is the

real line and ~3 the Borel a-field. Suppose that Q, the probability on ci,

is not comp letely specif ied but that, for fixed real numbers t1,. . .,t~ , the

distribution of (F( t
l),...,F(tk

)) is known , where F is a random distribution

functior from Q. Let L(F ,a) denote the loss function for action a for dis-

tribution function F e ci and ci a decision rule from the observation space R

to the action space A. Then the risk function R(F,d), associated with

distribution function F € ci when decision rule d is taken , is defined by

R(F ,d) = EL(F,d(X) ) ,

where the expectation is over X , where X has distribution F. The maximum

risk , R(d) , is given by

R(d) = sup R(F ,d).
Feci

A rule (if one exists) which minimizes the maximum risk over all decision

rules is called a minimax rule.  The average risk, R (Q, d ) ,  for completely

specified probabil ity Q on Q, is given by

R(Q, d) = f~
R(F ,d)dQ(F).

A rule (if one exists) is called a Bayes rule if it minimizes the average

risk over all decision rules.

Definition 3.1. (Doksum [3]) .  Let cl(q ,k) {F e 0: F(t 1) = q~
} for

q = (q1,. ~~~~~~ 
~ Let the measure A on Rk, dependent on Q, be given by

A(q; Q,k) Q{F € 0: F(t1) � q1, i = 1,... ,k}.

I

- 
. .‘-

~~~~~~~~~~
.- 

~~~~~~~~~~~~~ 
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

— --~
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A is then the distr ibut ic~n of F(t1),.. . ,F(t ~~) under the probabili ty measure

Q. The average maximum risk , rk(Q,d), associated with probability Q and

decision rule d , is

rk (Q, d) = I k [sup R(F,d)]dA (q).
R Fe0(q ,k)

A rule is said to be mixed (or mixed Bayes-minimax) if it minimizes the

average maximum risk over all dec ision rul es.

Definition 3.2. Let G denote a set of probability measures on 0. Pefine

the G-maximum risk for rule ci as sup R(Q,d). A rule (if it existsi~ is saidQeG

to be G-minimax if the rule minimizes the G-maximum risk over all decision

rules.

If 
~F 

denotes the probability on 12 which is the distribution function

F with probability one, then a G-minimax rule is minimax if G contains

for all F e 0.

A natural question is what are the relationships between these various

risks and their associated rules. Doksum [3] provides a partial answer.

Lemma 3.3. (Doksum [3]). For any decision rule d and prior Q on 12, the

follow ing hold:

(i) R(d) � r
k(Q,

d) > R(Q ,d) (k � 1) ;

(ii) if (IT : t < ... < t )
~~ is a sequence of par titions suchm m ,l m ,km rn— i

that each par tit ion is a refinement of the prev ious one , then

rk (Q,
d) � r

k (Q, d) for m < 9..
m 9.

- _ _ _ _ _ _ _  —
~~~~~ _ . ________________
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Definition 3.4. The carrier of a given distribution is the smallest compact

set whose probability under the given distribution is one. For example ,

for F € 0, the carrier of F , denoted C(F) ,  is the smallest compact set on

R whose probability under distribution F is one.

Definition 3.5. The support of 0, S(Q), is given by

S(0) = u C(F) .
Fe0

Proposition 3.6. If Q e G , then, for every d ,

R(d) � sup R(Q ’ ,d) � R(Q ,d).
Q’ cG

Proof. Clearly , sup R(Q ’,d) � R(Q,d) since Q € G. But also , for as
Q’ €G

def ined previously, if G*=G u {QF: F e o}, then sup R(Q ’ ,d) R(d ) �

Q~ eG*
sup R(Q’,d). Ha ‘ eG

Doksum defines a rule , which , in some cases , is a mixed rule. Let

t1 = inf{t: t e S(cl)) and let tk = sup {t : t e S(0) } and assume

< t
1 

< t
k 

€ ~~ . Let F
q k denote the polygonal distribution function

with F(t.) = q. for i = 1,... ,k and F
q,k 

linear on [t1, 
t .~~~1

] for

I = 1,... ,k - 1. Let Fk denote the random distribution function obtained

by letting q in Fq, k have distribution A = A (; Q,k ) ,  for Q a prior on 0.

Assume F
k 

is measurable. Let 
~k 

denote the distribution of Fk 
and d

k

the Bayes rule for 
~k 

(if it exists).

Theorem 3.7. (Doksum [3]). If Fq,k c 12 for almost all q in C ( A ) ,  if such

a dk exists, and if rk(Q,dk) = R(Q k , dk), then dk is a mixed procedure.

. —

__________ - 
. . — 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

.
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Theorem 3.7 provides a method for obtaining a mixed rule; i.e., one f inds

the Bayes rule for prior 
~k ’ and , if the hypotheses are satisfied , the

Bayes rule is a mixed rule.

Let G
k 

= {Q a probability on 0: (F(t
1) ,  F(t2) - F(t1),. .. ,F(tk) - F( tk.1 ))

has a fixed , known distribution).

Proposition 3.8. For any decision rule d and for Q e

r
k

(Q, d) � sup R(Q ’ ,d).
Q’ €G~

Proof. For Q’, Q’’ € Gk , A(q ; Q’ ,k) = A (q ; Q ’’ ,k) for al l  q e

in that A depends on F at t1,.. 
~~~~ 

for F a random distribution function.

Therefore , rk (Q’ ,d) = r
k (Q ’’ ,d) for all rules ci. Taking sups over G’ € Gk

on both sides of the inequality

rk(Q,d) � R(Q’.,d) ,

obtained by Proposition 3.6, yields , for any Q’’ € Gk,

rk( Q, d) � sup R (C)’,d).
Q’ €G

In particular , Q e Gk and the proof is complete.

Corollary 3.9. If Proposition 3.8 holds and if, for distribution Q on 0,

the Bayes risk equals the mixed risk associated with mixed rule d , then ci

is also a G
k
_minimax rule.

Proof. For a Bayes rule 5,

R(d) � r
k

(Q, d) � sup R(Q ’,d) � (O ,d) ~Q’ 
~
0k

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
“ i:_ ~~~~~— - -~~— --— ~

- - -
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by Lemma 3.3 and Propositions 3.6 and 3 .8. Now note by assumption , rk(Q,d)

= R(Q 6), so sup R(Q’,d) = R(Q,15). Therefore, d is Gk
_minimax . H

Q’ eGk
The significance of Corollary 3.9 is that , in certain special instances ,

a Gk
_m inimax rule can be found by finding a Bayes rule.

Let {T1~ : ~ 1 
< 

~ 
be a sequence of partitions such that

“ k

each partition is a refinement of the precedin g one and such that

- t~~1I -+ 0 as ~~. Fur ther , suppose the t ’s are from the space

[0,1]. Let C[0,l] denote the continuous distribution functions defined on

[0,1]. ~or partition TTk’ let dk denote a m ixed rule for the g iven

probability Q on C[0,l].

Theorem 3.10. (Doksum [3]). Let Fq, k denote the polygonal distribution

function with F(tk l
) = q

~ 
and F

q,k linear on [tk i ~ 
tk i+l } for

i 1,... ~~~~ If F
q k e o for almost all  q in C(A) , if d

k 
denotes the

mixed rule for probability Q on 12 associated with partition k, and if d

is a Bayes rule such that d has continuous bounded risk R(Q,d), then , for

12 c C[0,l],

lim r
k(Q,

dk) = u r n  R(Q,dk
) = R(Q ,d).

k-ia.

Theorem 3.11. Under the conditions of Theorem 3.10, if Gk
_minimax rules

exist for k 1, 2,..., then , for Q e G
k 

for k = 1, 2,...,

lim sup R(Q’,ók
) - R(Q ,d).

k-ic~ Q’ cGk
Proof. It follows from Propositions 3.6 and 3.8 and the definition of a

Gk
_minimax rule that



-~~ -~~~~~~~ 
- 

11 

—

~~~ I

R(Q,d) 
~ 

R(Q, sS
k

) � sup R(Q ’,15k) � sup R(Q’,dk
) � r

k(Q,d ) .

Q’cGk 
k

Thus, by Theorem 3.10,

lim sup R(Q ’,Sk) = R(Q ,d). H
k-i03 Q’eGk

The importance of Theorem 3.11 is that, if Gk_minimax rules exist and

the conditions of the theorem are satisfied , the associated Gk_minimax

risk approaches the Bayes risk.

The application of this development to the Dirichlet situation will

become apparent immediately. Let G
k 

= {Q a probabil ity measure on

0: (F(t 2) - F(t
l
),...,F(tk

) - F(tk l )) has a Dirichlet distribution with

parameters (a (t l, t 211.. ., a(t k l , t k ] ) .  Then Gk _minimax rules are exactly

those rules for which a is known only on (k - 1) intervals. The search

for G
k
_minimax rules will be conducted by means of Corollary 3.9. The

behavior of such rules as k -
~~ 

a., under the cond itions enumerated , is given

in Theorem 3.11.

The remaining two sections contain applications of this development.

Section 4 treats estimation of Pr(X � Y) under incomplete Dirichlet prior

information. Section 5 considers estimation of a rank order under incomplete

Dirichlet prior information.

4. Estimation of Pr{X � Y} Under Partial Prior Information

Consider the problem of estimating Pr{X � Y} in the two sample situation

under incomplete Dirichlet prior information. In particular, assume

Xi~ ••~~
Xm is a sample of size m from a Dirich let process on (R,B) with

parameter a and Y1,...,Y~ a sample of size n from a second Dirichiet process

----i . ~1
_____________________________________ 

—- ‘-~~~~
_ _  
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(independent of the first process) on (R ,8) with parameter B. Further ,

assume that t 1,.. . ,tk are fixed such that a(t j,t~ +i ] 
and 8(t~ ,t1~1] are

known for i = 1,... ,k - I and that a ( R_ ( t l, t k ]) = 6(R_ (tl,tk]) = 0. The

parameter of interest is ~(F ,G) = Pr{X � Y} = fFdG where F is the random

distribution function from the first Dirichlet process and G the random

distribution function from the second process. Let Fk and denote the

polygonal random distribution functions with Fk(ti) = F(t1
) ,  Gk(ti) = G( t

1)

for i = 1,.. .,k and Fk and Gk linear on [t.,t~~ 4 1
] for i = l ,...,k - 1. Then

k-l
fFkdGk = 

~ Z [F(t1) + F( t
~+1

)][G(t
~+1
) -

1=1

For squared error loss function , the Bayes estimate R
k of ~

(Fk,G~.
) is

= E (
~

(Fk,Ck)IX l,...,X ,Yl ,...,Y ) ,

where it denotes that F(t) is a Dirichlet process with updated parameter

a + Z 6
~ 

and G(t) is a Pirichlet process with updated parameter B +
i=l i j 1

L~t p. = F(t. 1) 
- F(t.) and p ’ = G(t.

1
) - G(t~) for j = 1,.. .,k - 1. By

Theorem 2.5 and Definition 2.4, p = (p1,.. 
~‘~ k i ~ 

has a Dirichiet distribution

with parameters {ct(t1,t~~11 + ~~~~~ and p ’ = ,. ,p~~1 ) has a Dirichiet

distribution with parameters {$(t1,t~~1
] + N

1
}~~~, where and N~ denote

the number of X’s and Y ’ s, respectively, which fall  into (t~ ,t~~1 ] for

i — 1,... ,k - 1. It is easy to see by independence of the processes,

therefore, that 
~k ~s given by the right hand-side of (1.1).

The estimator A
k 
may be rewr itten as

_____________________ 
~~~~~~~~~~~~~~~~~ 

- 
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k—l a(t1,t1] + ~a(t.,t.~~1] B(t1,t1~1]= amBn Z
i=I ct(R) B(R)

+ (1 - am )B 
k-i M1

+.. •41l~ + ~M1~1 B(t
~~

,t 1+i]

i=l in B(R)
(4.1)

k-i c&(t1, t.J + ~a(t.,t .~~1] N1+ a ( i — B )  ~ 1 1 1
m i=l a(R) n

k-i M +. . . i44 . + ~M. N.
+ (1 — a) (1 - B~

) ~ 1 i i+l 1

1=1 in n

where a = a(R)/(a(R) + m) and 8 = B (R)/(8 (~ ) + n ) .  ~!ote that this estimator

with the squared error loss function is both a mixed rule (by Theorem

3.7) and a Gk~
minimax rule (by Corollary 3.9) for 12 = ((F,G) : p and p ’

are independent Dirichlet distributions with parameters

a(tkl ,tk]) and (B(tl,t2],...,3(tkl ,tk]), respectively).

As the t1
1 s become dense , 

~k is seen to approach Ferguson’s [4]

estimator for Pr(X � Y) for complete Dirichlet prior information. As

a( R) and 8(R) -
~ o~ ~k 

approaches the Mann-Whitney U ’ statistic for grouped

data (as given in Putter [5]) :

k-i M + . .. -i-M . + ~M . N.
U ’ = 

~ 
1 1 1+1 1

1=1 m n

As a(R) and 8(R ) get large ,

k-i a(t1,t1] • ~cz
(tj,ti+i 1 B(t1.t1~1]

i—i ct(R) 8(R)

I ,
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The estimator would be useful , for example, in the following situation.

Suppose there are two middle-sized towns for which one wishes to compare the

cholesterol rates , in particular to estimate Pr (X � Y) where X is the

cholesterol level of a randomly selected person from town A and Y is the

cholesterol level of a randomly selected person in town B. Town B could

be undergoing a program designed to lower cholesterol rates with town A

serving as a control . There is prior knowledge about the cholesterol levels

in the two towns . The prior knowledge is quantified by specifying the

weights a(t
~ ,t~ +i J and 8(t 1, t~+i ] for i 1,.. . ,k - 1. The values a(R) and

8(R) reflect the degrees of confidence held in these weights. The estimator

is then a combination of the priors and the actual data tabulated by

intervals.

5. Rank Order Estimation Under Partial Prior Information

Let X1,.. .,X,~ be a sample of size n from the distribution F. Assuming

F is a random distribution function chosefl according to the Dirichlet process

prior with parameter a , Campbell and Hollander [2] derive the Bayes estimator

of the rank order G of X1 among X1,.. .,X~ ba sed on knowledge of r( cn)

observed values Xii•~~~
X
r~ 

In this Dirichlet model , care must be taken in

the definition of a rank order since the distribution chosen by a Dirichiet

process is discrete with probability one, c.f. Berk and Savage [1]. To resolve

the issue of ties with regard to the rank order, average ranks are used.

Definition 5.1. Let K, L, and M denote the number of observations of

X1, X2,... ,X~ that are less than, equal to, and greater than X1, respectively.

Then the rank order G of X1 among X1, X2,...,X~ is the average value of the

_ _ _ _  

. . 

_ _ _ _ _ _- .5— -. 4 . . . 
~~~~~~~~~~~ — -

~~
— ~~~~~~~~~~~~ — - - - — — IS— —-- — —-
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ranks that would be assigned to the L values tied at X1, in a joint ranking

from least to greatest, if those values could be distinguished; namely,

G {(K + 1) + (K + 2) + ...+ (K + L)}/L = + {(L • 1)/2)].

Similarly, for K’, L’, and ~1’ defined, respectively, to be the

number of observations of X1, X2~~~• ~~ less than, equal to, and greater

than X1, the rank order G’ of X1 among X1, X2,. ,X~ is given by G’ = K’ +

(L’ + 1)12.

For squared error loss, the Bayes estimator is (see equation (1.2)

of [2])

G = G’ + (n - r)(ct’(—~, X1) + ~a’({X1})}/a’(R) , (5.1)

where R is the real line and a’ a + 
~ 

, where is that measure
i=l i

which concentrates its entire mass of one at the point z.

In this section it is assumed that a is not completely known ; instead a

is specified only on k-i intervals (t .~~~t~~~~1
] for i = l ,...,k - 1, with

k-l
a(’~) =~~~ a(t., t .

41
} .  Let denote thc polygonal random distribution function with

1=1
Fk(tj) = F(t.), i = 1,.. .,k, for F a random distribution function from the

Dirichlet process. What is the Bayes estimate for the true rank order g if

F is known and ~~~~~ ,X~ have been observed? It is easy to appeal to equation

(3.3) of [2] for Pr{(K, L, M) z (k, 9., m)IX 1,...,Xr,F). The mean GF of G ,

given X
1
...,X and F,is obtained from the mean of a multinomial . We find

G
F 

= G + (n -r )(F(X~) + ~~F( ”~ ) -

_  
_

-— 
— 

~~~~~~~~~ ~~~~~~~
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Re stricting just to polygonal distribution functions, it is clear that GF using

the squared error loss function depends on F
k 
not just at Fk(tj), I = 1,

...,k. This makes finding a mixed rule for the rank order problem most

di fficult.

Suppose the observations have simply been grouped into intervals where

the values a assigns to these intervals are known. Rather than take the

loss function L(g,d) = (g-d)2, we use the following modified loss function.

For g(F, X~ ,... ,X~) = g’ + (n-r)F(t 1) + *(n-r)[F (t1÷1) 
- F(t

~
)1
~ 

if

c (t1,t.4~J, the loss is given by (g(F .X1
,...,X~)_d]

2. The mixed Bayes

minimax rule is then easily shown to be

= C’ + (n - r)[a’(t1, t1] + ~
a’(t

~
,t1+i])/a’(R) (5.2)

if e (t 1,t~+i] for i = l,...,k - 1. Note that this rule is really just

the Dirichiet estimator with complete information concerning the parameter
ka , but where a iS concentrated at (k - 1) atoms (t . }.  ., so that

k 1 1~~~~

Z a((t~}) = a(R).
i—2

An example in which such an estimator could be of use is as follows.

An automobile driver is passing through a town in need of regular gas.

The driver knows there are n stations in town and all n clearly post their

prices for gas. From past experience at the gas pump , the driver has some

idea of the distribution of prices in the reg ion. The model tend s to be

contagious in that if one station advertises a particular price , competition

(or lack of it) will cause others to be more likely to adopt that price also .

Hence the Dirichiet model is not unreasonable here. The problem is for the

- 1:11:1
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driver to estimate , as he passes the r~2i station , the rank of that station ’s

gas price among all n station s, on the basis of the prices at the first r

stations and his prior information. Then, the estimator ~ could be used,

with the parameter a(R) reflecting the weight or confidence attached to

the driver’s prior knowledge of regional gasoline prices.

I

L ~~~ ~~~~~~~~~~~ ____ 
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